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Newtonian trajectories and quantum waves in expanding force 
fields 

M V Berry? and G Klein$ 
t H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 ITL, UK 
$ Department of Mathematics, University of Exeter, North Park Road, Exeter EX4 4QE, U K  

Received 22 February 1984 

Abstract. We study non-relativistic particles and waves in N dimensions in a time-dependent 
potential V (  r /  I( r))/(l(f))’, which describes a force tield that expands and weakens as the scale 
factor I increases. I t  I :  is a quadratic function of time, then, in a reference frame expanding 
with the system and employing clocks recalibrated to read a scaled time that depends on I ( f ) ,  
the classical and quantum evolutions can be described byaconservative Hamiltonian differing 
from the original one by an ‘inertial’ term quadratic in the position variables. The quantal 
‘expanding modes’ form a complete set whose energies decrease and which carry current 
outwards from the centre of expansion. Non-equilibrium statistical ensembles can be 
constructed, expanding with the force field. 

1. Introduction 

We shall consider, classically and quantum mechanically, certain non-relativistic sys- 
tems which depend on a spatial scaling parameter, 1. This parameter is assumed to 
change at a finite rate, and, for these systems, we intend to generalise the theorem 
concerning adiabatic invariants which, in its familiar form, holds only in the limit of 
infinitely slow changes (cf e.g. Whittaker 1953 or Arnold 1978). A system is specified 
by its Hamiltonian function H :  let it be that of a particle of mass m moving in a 
non-conservative potential field V in a space of N dimensions. The linear scale factor 
1 = 1 ( t )  governs an isotropic expansion, or contraction, of this field, so that 

where the multiplier a(/) scales the strength o f the  expanding field. Such a Hamiltonian 
includes the important case of an  expanding cavity, for which, at all times, the potential 
term would vanish inside the cavity and be infinite outside it. 

It is a surprising fact that whatever the form of V, the functions I ( r )  and a ( / )  can 
be chosen in such a way that, with appropriate scaling of the time also, the particle 
can be considered as moving in a conservative field. Relations between the Hamil- 
tonians, and between the Hamilton principal functions, in the original and scaled 
coordinates are then very simple. A consequence of this is that in the wave-mechanical 
treatment any quantum state can be expressed as a superposition of expanding modes 
whose wavefunctions are solutions of time-independent equations of the Schrodinger 
type. Ensembles of classical trajectories or quantum states can be chosen which are 
stationary in the expanding reference frame, and this raises the intriguing possibility 
of an exact statistical-mechanical description for certain processes occurring at finite 
rate. 

1805 0305-4470/84/091805 + 11$02.25 @ 1984 The Institute of Physics 



1806 M V Berry and G Klein 

2. Classical trajectories 

From the Hamiltonian (1.1) it follows that the particle trajectory r = r(t) is determined 
by Newton's equation of motion, 

m d2r /d t2  = -adV(r/l)/ar. (2.1) 

P = r/  1(t), (2.2) 

With the change of variable 

and a new time variable r = T( t), to be defined presently, the equation of motion becomes 

ml2rI2 d2p  m(12r')' d p  mll" dV(p) -_ +-p = -- +-- 
a d r 2  a d r  a aP ' 

where the primes denote differentiation with respect to t. The functions l(t), r( t)  and 
a(1) can now be determined so that the motion of the particle, when described in terms 
of the new variables, appears to take place in a conservative field of force. 

In order for the second, 'dissipative', term in (2.3) to vanish, it is necessary that 

l2r' = constant 1, i.e., r ( t )  = lo' 6, 
where the choice of unity for the constant and of zero for r(0) involve no loss of 
generality. For the first term to reduce to md2p/dr2,  we then want 

a = 1 / 1 2 .  ( 2 . 5 )  

m131" = k, (2.6) 

l ( t )=(at2+2bt+c)"2,  (2.7) 

a c - b 2 =  klm. (2.8) 

md2p/dr2  = -d( V(p) +fkp2)/dp. 

The last term in (2.3) can survive, provided its coefficient is independent of time, which 
requires 

where k is constant. This equation has the solution 

with the coefficients restricted by 

Thus (2.3) simplifies to 

(2.9) 

This result allows the following physical interpretation. Let measuring rods expand 
with the system to measure p instead of r, and let clocks be recalibrated to read r 
instead of t. In this frame of reference the particle appears to move in a conservative 
field consisting of V ( p )  plus the central force -kp (which is inertial in origin, reflecting 
the fact that observers in the expanding frame would accelerate). The central force 
attracts particles to the centre of expansion if k > 0, and repels them if k < 0. 

The class of linear scaling factors l ( t )  for which (2.7) holds, corresponds precisely 
to the exceptional expansion rates for which the study of repeated elastic reflections 
of a particle in an expanding spherical cavity simplifies considerably, as shown 
elsewhere (Klein and Mulholland 1978). There, the treatment included the more general 
cases of relativistic motion and of radiation, while here the more general cases of 
arbitrary potential V and any dimensionality N are investigated. 
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The fate of trajectories as t + 00 depends on the convergence of the integral (2 .4)  
for r. If a > 0 in the expansion law ( 2 . 7 ) ,  T tends to a finite limit, implying a constant 
terminal velocity d r / d t  in the original reference frame. The particle becomes effectively 
free as the field, where its intensity is appreciable, recedes to infinity with a speed 
greater than the terminal velocity-in an  expanding cavity the particle would be left 
behind by the receding walls. The same applies to the exceptional case of linear 
expansion, for which b2 = ac so that k = 0 and there is no inertial force. In the case 
a =0 ,  b>0 ,  r+00 as t + m ,  the expansion rate dl/dt decreases and the particle 
continues to interact with the field at all times. 

In cases of contraction, where 1 vanishes at some time tor the situation is different, 
since for all a and b the integral for r diverges as t + to: as the force field closes in, 
the particle experiences, in a flash, an eternity of interaction as measured on the r-scale. 

For later reference we note the following identities implied by (2 .7)  and (2 .8)  

I I"  + / I 2  = a, (2.10a,  6, c )  $( l ' / l ) '  = ( k / m ) / I 4  - $ a l l 2 ,  = a12 - k /  m. 

3. Hamiltonian formulation 

With (2 .5) ,  the Hamiltonian (1.1) becomes 

H ( r ,  P, 0 = t p 2 / m  + ( 1 P 2 ) V ( r / O ,  (3.1) 
and of course this is not conservative because I depends on time. In  the expanding 
frame, however, the equation of motion (2 .9)  can be generated by the conservative 
Hamiltonian 

%(p, m ;  k ) = ; . n 2 / m  + V ( p ) + $ k p 2 ,  

v = lp - ml'r  
where 

is the momentum conjugate to p .  The last relation comes from (2 .2)  and (2 .4)  together 
with Hamilton's equations for H and X. With the aid of (2.1Oc), % can be expressed 
in terms of the original variables: 

R= 12H - l l ' r .  p +;mar2 .  

H = (X - kp2) /  I' + $ m a p 2  + ( I f /  1)p 

(3 .4)  
The converse relation is 

n. (3.5) 
Now, the numerical value of 2"t is the constant 'energy' of motion in the (p, r )  

reference system, and  therefore the function on the right of (3.4) is a constant of the 
motion along any particular trajectory in the original ( r ,  t )  reference system. This 
function is a n  invariant of the dynamical system with respect to changes in the parameter 
1, provided they are in accord with the expansion rule (2 .7) .  Such changes need not 
be slow, as in the original theorem on adiabatic invariants, but may take place at a 
finite rate. 

The Hamilton-Jacobi equations for H and X are, respectively, 

(3.6) 

(3.7) 
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where W is Hamilton’s principal function corresponding to H (and depends on r and 
t )  and W corresponds to X(and depends on p and 7) .  The relation between correspond- 
ing solutions of these equations can be shown, with the aid of (2.4) and (2.6), to be 

w = W +fmll’p2, (3.8) 

apart from an arbitrary additive constant. 

4. Expanding modes in wavemechanics 

The Schrodinger equations obtained from (3.1) and (3.2) for the Hamiltonians H and 
X are, respectively, 

-(hz/ 2 m)a2+/ar2 + ( 1 / 1’) V(r/ /)(I, = iha+/a t 

-(h2/2m)a24/ap2 + ( v ( p )  + f k p 2 ) 4  = iha+/aT. 

*(r ,  t )  = ( 1 w - N ’ 2 4 ( P 9  7 )  exp[(i/2h)mlb21, 

(4.1) 

and 

(4.2) 

By direct substitution one can verify that the solutions of these equations are related by 

(4.3) 

apart from an arbitrary constant factor. 
This relation is already suggested by the connection, (3.8), between the solutions 

of the Hamilton-Jacobi equations and the phase of the wavefunction (Dirac 1947). It 
is nevertheless remarkable that the phase of (4.3) is given exactly by this connection, 
which in general gives only a semiclassical approximation. The problem under dis- 
cussion is thus similar to that of the free particle, the harmonic oscillator, and the 
Coulomb potential, for which semiclassical methods yield exact results. The presence 
of the factor I-”’ in (4.3) is also not unexpected: it is a trivial consequence of the 
expansion, and guarantees that the probability density remains normalised in N -  
dimensional space. 

As X is independent of T,  it is possible to obtain solutions of (4.2) by separation 
of variables, in the form 

4 4 4  7) = u ( p )  exp(-i87/fi). (4.4) 

We shall therefore have eigenfunctions u,(p),  and corresponding eigenvalues 8,, 
satisfying 

(4.5) 

together with boundary conditions (which of course must not depend on T ) ;  as is usual 
in multidimensional separable systems the label n can denote several indices labelling 
the state. The wavefunction (I, of (4.2), in the original variables, is then a superposition 
of ‘expanding modes’: 

(4.6) 
That is, there are eigenfunctions even in the case of varying potential field. Despite 
the evolution of the system ‘the undulatory content remains similar to itself (Larmor 
1900). 

For a system in the nth expanding mode +,,, the expectation value of its energy, 
E, ( t ) ,  at time t is the expectation value of the Hamiltonian operator fi corresponding 

-(h2/2m)d2u,/dp2 +( V(p) + f k p 2 ) u ,  = %,,U,, 

A(r ,  t )  = ( ~ ( t ) ) - ” ~  exp[(i/h)(ml‘/2i)r2- ~ , ,T(c) ]u , , (~ /  [(t)). 



Newtonian trajectories and quantum waves 1809 

to (3.1), viz, 

On substituting from (4.6) and using (2. lob) it follows straightforwardly that 

& ( t )  = ( l / l ( t > ) 2 ( 8 n  - k(pz)n)  + h ( p 2 ) , ,  (4.8) 

where 

is the constant expectation value of p 2  belonging to the nth eigenstate satisfying (4.5). 
The result (4.8) can also be obtained from (3.5) on replacing p m by the Hermitian 
operator f(P 73 + ?i - b),  etc. 

If the expansion continues forever, (4.8) gives 

J W ) + h ( P 2 ) ,  as t + m .  (4.10) 

This is finite if a # 0, and a > 0 is the case discussed in P 2, where the force field leaves 
the particles behind, so that the asymptotic state is a wavepacket expanding into empty 
space. If a = 0, however, the particles continually work on the field and E,, + 0 as t -f 00 

for all states 4,. 
The decrease in energy implies a continual local redistribution of the wave, and 

this is expressed, for the mode (Fl,, by the probability current (expectation value of the 
Hermitian local velocity operator) 

in ( r ,  t ) =  (fi,lf[G/ m ) a ( i  - r> +a(; - r)$/ ~ I I J I )  
= ( h / m )  Im 4: aGn/ar. 

From (4.6) one finds 
(4.1 1) 

in(*, = I+,(r, t)lz(1‘/l)r = ( ~ / ~ ) N l ~ n ( ~ / ~ ) 1 2 ( ~ ’ / ~ ) ~ .  (4.12) 

Thus j ,  is directed radially outwards from the centre of expansion, or inwards if the 
potential field is contracting. 

Expanding modes will exist only if the amplitude functions u,(p) exist and corres- 
pond to a discrete spectrum of eigenvalues 8,. This spectrum depends on the modified 
potential V + i k p 2  and on the boundary conditions; one can think of the boundary 
conditions as geometrical idealisations, as in the case of hard walls, or as included in 
the field V. The effect of the parabolic term 4kp2 depends on whether the expansion 
is accelerating or decelerating (cf 2.6), and will be clarified by the consideration of 
particular cases, to which we now turn. 

5. Special cases 

5.1. Free particle 

The Hamiltonian (1.1) is H = f p 2 /  m, and according to Newtonian mechanics the particle 
will describe a straight line with constant speed in the ( r ,  t )  reference frame. It is easily 
shown from (2.2) and (2.7) that in the non-inertial frame (p, 7) the path appears as a 
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hyperbola if k < 0 and as an  elliptical arc if k > 0. In the latter case, equation (2.9) is 
that of an  N-dimensional isotropic harmonic oscillator. The motion is conservative 
in both reference frames and (3.4) is easily verified, with both X and H as numerical 
constants and  both 1’ and r2 as quadratic functions of the time. 

In the quantum mechanical treatment we have for the case k > 0 the paradox that 
in the ( r ,  t )  frame there is a continuous energy spectrum for the free particle, while in 
the (p, 7) frame the ‘energy’ 8 has the discrete spectrum of a N-dimensional harmonic 
oscillator. Now, the wavefunctions (4.6) in ordinary space, with the U ,  as products of 
Hermite functions, have the unique property that their form is preserved in the special 
class of expansions governed by (2.7). Such form invariance can be considered as an  
unusual condition on 4, more restrictive than what is commonly imposed on free 
particles; this makes the spectrum discrete, thus resolving the paradox. Nevertheless 
the ‘Hermite packets’ (4.6) form a complete set in terms of which any 4 can be 
expanded. The Hermite functions may be compared to the Airy functions, which 
generate wavepackets with the special property that 191’ for a free particle preserves 
its form in a uniformly accelerated reference frame (Berry and Balazs 1979, Greenberger 
1980). 

Other cases in which the motion is conservative in both reference frames occur 
when the potential V ( r )  has the form y / r 2  (inverse cube force), C .  r / r 3  (dipole field) 
and r * T r / r 4  where y is a constant scalar, C a constant vector, and T a constant 
tensor; the last term of (3.1) is then obviously time-independent because l ( t )  cancels. 

5.2. One-dimensional expanding box, or continuously stretched quantum string 

This system is the simplest example of a particle in a hard-walled expanding cavity, 
and  can easily be generalised to an  N-dimensional parallelepiped. The potential is 

We shall not discuss the classical motion in detail, but draw attention to the fact that, 
for sufficiently small values of the constant X, repeated reflection can occur not only 
at  the walls p = 0 and p = 1 but also at intermediate p values (those for which X =  $kp2) .  

The quantum mechanical expanding modes (solutions of 4.5) can be expressed in 
terms of parabolic cylinder functions (see e.g., Gradshteyn and  Ryzhik 1965): 

U&) = constant{D,(z)- Dy(-z)}, (5.2) 
where 

~ = ( 4 m k / h ~ ) ” ~ p ,  (5.3) 

and the order v is related to the ‘energy’ 8, by 

The solution ( 5 . 2 )  satisfies the boundary condition at  p = 0. At p = 1 we require U,(  1) = 0, 
and  this imposes a discrete spectrum on v and hence on 8,. In the case k = 0 ,  of 
uniform linear expansion, or  of no  expansion at all, U ,  is a simple trigonometric 
function and 8, = n 2 v 2 h 2 / 2 m .  
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5.3. Expanding spherical cavity 

This is the case studied by Klein and Mulholland (1978). They found, almost by 
accident, that for the repeated reflections of a particle from the sphere, a certain 
‘rebound function’ is conserved, provided the expansion takes place in accordance 
with (2.7). It is now clear and not difficult to prove that, for classical motion, this 
conservation can be considered as a consequence of the conservation of the Hamiltonian 
% of (3.2), cf appendix. 

Quantum mechanically, the expanding modes for this separable system can be 
labelled by three indices j ,  n, s and in spherical polar coordinates they may be written 

U,,,( P )  = (F/ , , (c) /J l )  e’” pf(cos 01, 

5 = p(2mgj, , /~2)’/2.  (5 .6 )  

( 5 . 5 )  
where 

The equation for the radial functions en is found to be 

where 
K),,= kh2/4m’&,,,. 

The boundary conditions for a sphere of unit scaled radius p demand that 

and determine the eigenvalues g,,,. 
For the special case k = 0, where the radial expansion is uniform, the solutions of 

(5.7) are elementary functions, since then F satisfies a Bessel equation with half-integer 
order, namely 

Fn,(5) = constant 4+1/2(5) .  (5.10) 

The eigenvalues are seen to be simply related to the zeros of these Bessel functions, 
as for a non-expanding sphere. 

6. Expanding ensembles in statistical mechanics 

Since the Hamiltonian X of (3.2) is time independent, we can imagine an ensemble 
of classical systems with a stationary distribution in (p,  m )  phase space, depending on 
%(p, n; k ) .  In the original ( r , p )  phase space the corresponding distribution is not 
stationary because there X is a function of time through the /-dependence of (3.4); it 
describes a non-equilibrium ensemble expanding with the force field. The analogous 
quantum mechanical ensemble, which we shall not consider further, would have a 
density matrix describing a mixture of states, each of which is one of the expanding 
modes (4.6). 

Each such ‘expanding ensemble’ is specified by a function G(W, in terms of which 
its distribution function in ( r ,  p )  is given by 

d N r  dNpG[12H - 1l‘r.p +;mar2] . 
(6.1) 

A55 ) f ( r , p ,  t )  = { G[i2H(r,p, I) - Wrap +;mar2]} 
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In writing this formula we have used the fact that the transformation from (p,  n) to 
( r , p )  via (2.2) and (3.3) has Jacobian unity. It is unrealistic to imagine inter-particle 
interactions which scale with time in the special way envisaged in this paper, and  so 
henceforth we restrict attention to the case where (6.1) describes ensembles of X 
non-interacting particles confined in an  expanding (three-dimensional) vessel whose 
walls give rise to the potential V ( r / l )  in (1.1). Even with this restriction, the ensembles 
(6.1) d o  not describe homogeneous systems: in the canonical case, for example, for 
which G = exp(-p%), the spatial density varies radially as exp[ -qpkr2 /1 ( r ) )2 ]  (as can 
be verified by integratingf(r, p ,  1 )  over p and using (2.10c)), and the velocity distribution 
is only locally Maxwellian, with a mean radial velocity varying as (1’ /1)r .  

We investigate the possibility of establishing thermodynamic analogies for the 
non-stationary ensemble averages obtained by integrating functions of ( r ,  p )  weighted 
by the distribution functionf(r, p ,  t ) .  These averages will be evaluated by relating them 
to time-independent ensemble averages for phase functions of p and n. Ensemble 
averages will be denoted by overbars. 

Consider first the internal energy per particle, denoted - by U / - + ;  corresponding to 
the average value of H .  From (3.5), together with p -  r = O  which follows from 
symmetry, we obtain 

U / Are(% - k 2 ) /  1’ + t m a 7 ,  (6.2) 

where we use the symbol e to denote the relation between a thermodynamic quantity 
and its statistical mechanical analogue (cf Tolman 1938). This has the same form as 
the quantal expectation value (4.8) and may be regarded as its classical analogue. 
Clearly, the internal energy decreases as the vessel expands. 

Similarly, the correspondence for pressure P should be 

P e  - aH/aR. (6.3) 

R = ~ 1 3 ,  (6.4) 

where the volume R in the vessel varies with 1 and a geometrical constant K ,  

while H depends parametrically on 1 by (1.1). Thus 

Substituting for V with the aid of (3.2), we obtain 

The last two terms cancel by virtue of the generalised equipartition theorem of Tolman 
(1938) for the ensemble in p, n space, which applies because r 2 / m  = dX/dn  and 
the components of p are confining coordinates (this theorem holds for any ensemble 
of the type 6.1). Substitution for X from (3.2) and using the stipulation that V = 0 
inside the vessel give, finally, 

- 
Pe( X /  3 12n)(?r‘/ m - k p 2 ) .  (6.7) 

Next we consider the temperature T, for which the generalised equipartition theorem 
suggests the correspondence 
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where k ,  denotes Boltzmann's constant. With (3.3), (2.2) and  (2 .10~)  this becomes 
- 

k~ T*( 1 /3  \')[?rz/ M ( mal2 - k ) p 2 ] .  (6.9) 

This temperature is a property of the system as a whole and is different from the 
uniform local temperature inferred from the local velocity distribution (Maxwellian 
in the case of a canonical ensemble) as seen in a frame moving with local expansion. 

The quantities U, P, T, which have just been calculated, can be considered as 
analogous to  the corresponding quantities in ordinary equilibrium thermodynamics 
only if there exists an  analogy for the second law of thermodynamics. This requires 
that if d refers to differences between quantities belonging to ensembles whose para- 
meters (e.g. k )  differ infinitesimally, then the quantity 

( 1 / T)(d U + P dR)  (6.10) 

must be the differential of a function S which of course is the entropy of the system. 
From (6.2), (6.7) and (6.9), and  using (6.4), we obtain 

- - - 
-[d{irr2/m - & k p 2 }  + I 2  d{$map2}]. (6.1 1) kB - 

1 3 
-(d U + P do)*- 
T 

- 
2 { i r r 2 / m  +ip2(ma12 - k ) }  

Since this is not, in general, a per,'ect dif,erential, our tentative thermodynamic 
analogues are thus seen to be generally unsound. They are vindicated, however, for 
the very special expansion when a = 0, which corresponds to the vessel's surface area 
increasing at a constant rate (cf 2.7) and  for which (cf 2.8) 

b 2 =  - k / m ,  a = 0 ,  [ ( t )  = (2bt + c)"'. (6.12) 

For this case, (6.1 1) does define a function of state, namely 
- 

Seh"kB ~ n { t r ' / m  + f m b  2 1  p } 3 / 2  +constant. (6.13) 

Moreover, this entropy, depending only on averages in the stationary ensemble, remains 
constant during the expansion, and the original system may be said to undergo a finite 
rate isentropic process. In addition, (6.7) and (6.9) show that when a = O  the system 
obeys the ideal gas equation of state at every instant, that is 

P o  = k^kB T, (6.14) 

and the entropy can be written as 

s = > V ~ B  1n(n ~ ~ ' ~ 1 ,  (6.15) 

which has the same form as for an ideal gas in equilibrium thermodynamics. Further 
it follows from (6.9) that the temperature of the system is inversely proportional to the 
surface area of the vessel. 

For these conclusions to represent more than mathematical analogies, the ensembles 
(6.1) (with a = 0) must be physically realisable. One way to achieve this for the canonical 
case with G = exp(-pE) might be to prepare the gas in an ordinary canonical distribu- 
tion by contact with a heat reservoir, with the vessel not expanding, then insulate the 
vessel and  then expand it in accordance with (2.7) with a = 0. The sudden onset of 
the expansion would initiate irreversible processes such as damped sound waves, and  
there is the possibility that these transient effects could provide the mechanism to alter 
the distribution to (6.1). We are not able to prove that this would happen. 
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A consequence of the constancy of entropy, easily obtained from (6.8) and (6.9) 

12p2 = constant. (6.16) 

A result corresponding to this, but as a time average for the free flight of a particle 
between wall rebounds, with the same constant for successive free paths, has been 
obtained previously (Klein and Mulholland 1978, equation (5.12)). Also, constancy of 
the total entropy is consistent with the uniformity of local kinetic temperature mentioned 
above, since in the absence of other dissipative effects, uniformity of temperature 
implies no heat conduction, no entropy flux, and no  local entropy production. 

with a = 0, is 
- 

7. Concluding remarks 

We have considered systems changing in time in consequence of a finite rate of change 
of an external parameter, namely the linear scale factor I (  t ) .  For changes in accordance 
with (2.7), a dilating frame of reference, and a recalibration of clocks, can be found, 
in which classical trajectories are determined by the stationary Hamiltonian X(equation 
3.2), and the quantum system possesses well defined time-independent wavefunctions 
U, and eigenvalues 8, satisfying (4.5). 2, U, and k5, d o  depend on the expansion rate, 
as given by (2.7), but only through its constant coefficients as embodied in k (equation 
2.8). X is an adiabatic invariant, not only in respect of slow changes of I ,  for which 
the concept has been formulated (cf Whittaker 1953), but also in respect of changes 
at finite rate, provided these are in accordance with (2.7). The constant of motion is 
given explicitly in terms of the original phase-space variables by (3.4). 

Although governed by a stationary Hamiltonian, motion in the expanding force 
field is different from that in the non-expanding field, because of the extra potential 
j k p -  in (3.2). The differences can be fundamental, in that expansion can alter the 
topology of the orbits. For example, if the original potential V describes two uncoupled 
harmonic oscillators with frequencies w ,  and w 2 ,  where w I / w 2  is rational, the orbit for 
an unexpanding system ( I  = constant) is a closed plane curve; for the expanding system, 
the addition of t k p 2  changes the frequency ratio to (0: + k /  m ) ” 2 / ( w :  + k / m ) ” 2 ,  which 
will almost always be irrational so that the orbit never closes (and indeed fills a rectangle 
in p space). A more profound difference would arise if integrable motion could be 
rendered chaotic (Berry 1978) by the addition of $kp* ,  with consequent change in the 
form of the eigenfunctions from regular to irregular (Berry 1977). (This cannot happen 
if V separates in Cartesian coordinates or in polar coordinates whose origin is the 
centre of expansion.) 

It should be possible to generalise results to relativistic motion, in particular to the 
wave optics of expanding cavities, and to the case of anisotropic expansion. 

I ’  

Appendix 

A particle moving classically in an  expanding spherical vessel of radius I = I ( r )  is free 
except for elastic reflections from the hard wall at p = 1. The spherical symmetry 
implies that angular momentum about the centre is conserved; let its magnitude, per 
unit mass, be h = Ir A U/, where U is the velocity of the particle. If now the expansion 
follows (2.7), the Hamiltonian X of (2.2) is also conserved; close to the wall at p = 1 
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(that is, just before and after a reflection), 

X = { r ’ / m  +fk. 
With (3.3) and  (2.2) the right-hand side equals 

fmh’ + f m r 2 ( ? .  U - l’)’ +fk, 

where ?= r / r  = p on impact, and since this expression is constant it follows also that 
for successive reflections 

( ? *  U - / ’ ) 2 / ) ? h  01’ 

is conserved. This quantity is the square of the ‘rebound function’ introduced by Klein 
and Mulholland (1978), and  it is remarkable that it contains speeds and angles only. 
The result means that 

( u 2  cos xZ+/ ‘ ) /u2  s in ,yz=(v ,  c o s x ,  - l ‘ ) / v ,  s i n x ,  =constant, 

where U and x are the speed and angle at any rebound, the subscripts 1 and 2 refer 
to incidence and reflection, and I‘ is the instantaneous rate of radial expansion of the 
sphere. While the equality of the two ratios for a given rebound is an  elementary result 
(also valid relativistically), what is interesting here is that all pairs of ratios have the 
same single value for all successive reflections. 
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